Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone
نویسندگان
چکیده
BACKGROUND The discrepancy between functional and inflammatory airway response to ozone has been reported in normal subjects, but few data are available for stable asthmatics regularly treated with inhaled corticosteroids. METHODS Twenty-three well controlled, regularly treated, mild-to-moderate asthmatic patients underwent two sequential randomised exposures to either filtered air or ozone (0.3 ppm for 2 hours) in a challenge chamber. Pulmonary function (PF) was monitored, and patients with FEV1 decrease greater than 10% from pre-challenge value were considered as responders. Immediately after each exposure, exhaled breath condensate (EBC) was collected to measure malondialdehyde (MDA). Six hours after each exposure, PF and EBC collection were repeated, and sputum was induced to measure inflammatory cell counts and soluble mediators (IL-8 and neutrophil elastase). The response to ozone was also evaluated according to the presence of polymorphism in oxidative stress related NQO1 and GSTM1 genes. RESULTS After ozone exposure, sputum neutrophils significantly increased in responders (n = 8), but not in nonresponders (n = 15). Other markers of neutrophil activation in sputum supernatant and MDA in EBC significantly increased in all patients, but only in nonresponders the increase was significant. In nonresponders, sputum eosinophils also significantly increased after ozone. There was a positive correlation between ozone-induced FEV1 fall and increase in sputum neutrophils. No difference in functional or inflammatory response to ozone was observed between subjects with or without the combination of NQO1wt- GSTM1null genotypes. CONCLUSIONS Markers of neutrophilic inflammation and oxidative stress increase also in asthmatic subjects not responding to ozone. A greater functional response to ozone is associated with greater neutrophil airway recruitment in asthmatic subjects.
منابع مشابه
Association of ambient ozone exposure with airway inflammation and allergy in adults with asthma.
RATIONALE Previous studies have demonstrated associations of high ozone levels with increased epidemiologic as well as lung function measures of asthma activity. OBJECTIVES In an observational study during the summer months, we hypothesized that higher ambient ozone levels are associated with more frequent symptoms, higher airway and systemic inflammation, as well as worse lung function in as...
متن کاملIL-17A Modulates Oxidant Stress-Induced Airway Hyperresponsiveness but Not Emphysema
IL-17A induces the release of pro-inflammatory cytokines and of reactive oxygen species which could lead to neutrophilic inflammation. We determined the role of IL-17 receptor (IL-17R) signalling in oxidant-induced lung emphysema and airway hyperresponsiveness. IL-17R(-/-) and wild-type C57/BL6 mice were exposed to ozone (3 ppm; 3 hours) for 12 times over 6 weeks. Bronchial responsiveness to ac...
متن کاملPeripheral Blood Neutrophilia as a Biomarker of Ozone-Induced Pulmonary Inflammation
BACKGROUND Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of...
متن کاملEffect of ozone exposure on airway responses to inhaled allergen in asthmatic subjects.
BACKGROUND Controlled human exposure studies have produced conflicting results regarding the effect of ozone on the early bronchoconstrictor response to inhaled allergen in specifically sensitized asthmatic subjects. Spirometric parameters do not necessarily reflect the airway inflammatory effects of inhaled ozone or allergen. OBJECTIVE This study was designed to investigate whether exposure ...
متن کاملNitric oxide synthase inhibitors attenuate ozone-induced airway inflammation in guinea pigs. Possible role of interleukin-8.
Nitric oxide (NO) is increased in exhaled air of asthmatics. We hypothesized that endogenous NO contributes to airway inflammation and hyperresponsiveness, and that interleukin-8 (IL-8) might be involved in this mechanism. In human transformed bronchial epithelial cells in vitro, NO donors increased IL-8 production dose-dependently. In addition, tumor necrosis factor-alpha (TNF-alpha) plus IL-1...
متن کامل